Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of the Korean Society of Biological Psychiatry ; : 148-156, 2016.
Article in Korean | WPRIM | ID: wpr-725027

ABSTRACT

OBJECTIVES: According to previous studies, the cannabinoid receptor 1 (CNR1) gene could be an important candidate gene for schizophrenia. Some studies have linked the (AAT)n trinucleotide repeat polymorphism in CNR1 gene with the risk of schizophrenia. Meanwhile, smooth pursuit eye movement (SPEM) has been regarded as one of the most consistent endophenotypes of schizophrenia. In this study, we investigated the association between the (AAT)n trinucleotide repeats in CNR1 gene and SPEM abnormality in Korean patients with schizophrenia. METHODS: We measured SPEM function in 167 Korean patients with schizophrenia (84 male, 83 female) and they were divided according to SPEM function into two groups, good and poor SPEM function groups. We also investigated allele frequencies of (AAT)n repeat polymorphisms on CNR1 gene in each group. A logistic regression analysis was performed to find the association between SPEM abnormality and the number of (AAT)n trinucleotide repeats. RESULTS: The natural logarithm value of signal/noise ratio (Ln S/N ratio) of the good SPEM function group was 4.34 ± 0.29 and that of the poor SPEM function group was 3.21 ± 0.70. In total, 7 types of trinucleotide repeats were identified, each containing 7, 10, 11, 12, 13, 14, and 15 repeats, respectively. In the patients with (AAT)₇ allele, the distributions of the good and poor SPEM function groups were 18 (11.1%) and 19 (11.0%) respectively. In the patients with (AAT)₁₀ allele, (AAT)₁₁ allele, (AAT)₁₂ allele, (AAT)₁₃ allele, (AAT)₁₄ allele and (AAT)₁₅ allele, the distributions of good and poor SPEM function groups were 13 (8.0%) and 12 (7.0%), 4 (2.5%) and 6 (3.5%), 31 (19.8%) and 35 (20.3%), 51 (31.5%) and 51 (29.7%), 36 (22.2%) and 45 (26.2%), 9 (5.6%) and 4 (2.3%) respectively. As the number of (AAT) n repeat increased, there was no aggravation of abnormality of SPEM function. CONCLUSIONS: There was no significant aggravation of SPEM abnormality along with the increase of number of (AAT)n trinucleotide repeats in the CNR1 gene in Korean patients with schizophrenia.


Subject(s)
Humans , Male , Alleles , Endophenotypes , Eye Movements , Gene Frequency , Logistic Models , Pursuit, Smooth , Receptors, Cannabinoid , Schizophrenia , Trinucleotide Repeats
2.
Journal of the Korean Society of Biological Psychiatry ; : 99-106, 2014.
Article in Korean | WPRIM | ID: wpr-725046

ABSTRACT

OBJECTIVES: Previous studies suggest that the cannabinoid receptor 1 (CNR1) gene could be an important candidate gene for schizophrenia. According to linkage studies, this gene is located on chromosome 6q14-q15, which is known to harbor the schizophrenia susceptibility locus (locus 5, SCZ5, OMIM 803175). The pharmacological agent delta-9-tetrahydrocannabinol (Delta-9-THC) seems to elicit the symptoms of schizophrenia. The association between CNR1 polymorphisms and schizophrenia is actively being investigated, and some studies have linked the AAT-trinucleotide repeats in CNR1 to the onset of schizophrenia. In this study, we have investigated the association between the AAT-trinucleotide repeats in CNR1 and schizophrenia by studying schizophrenia patients and healthy individuals from Korea. METHODS: DNA was extracted from the blood samples of 394 control subjects and 337 patients diagnosed with schizophrenia (as per the Diagnostic and Statistical Manual of Mental Disorders, fourth edition criteria). After polymerase chain reaction amplification, a logistic regression analysis, with age and gender as the covariates, was performed to study the variations in the AAT-repeat polymorphisms between the two groups. RESULTS: In total, 8 types of trinucleotide repeats were identified, each containing 7, 8, 10, 11, 12, 13, 14, and 15 repeats, respectively. (AAT)13 allele was most frequently observed, with a frequency of 33.6% and 31.6% in the patient and control groups, respectively. The frequency of the other repeat alleles in the patient group (in the decreasing order) was as follows : (AAT)13 33.6%, (AAT)14 21.6%, (AAT)12 18.5%, and (AAT)7 11.1%. The frequency of the repeat alleles in the control group (in the decreasing order) was as follows : (AAT)13 31.6%, (AAT)14 24.5%, (AAT)12 17.2%, and (AAT)7 11.6%. However, there were no significant differences in the AAT-repeat polymorphisms of the CNR1 gene between the patient group and the control group. CONCLUSIONS: Although our study revealed no significant association of the AAT-repeat polymorphism of the CNR1 gene with schizophrenia, it will serve as a good reference for future studies designed to examine the cannabinoid hypothesis of schizophrenia.

SELECTION OF CITATIONS
SEARCH DETAIL